ForestSearch#
- class anomalearn.algorithms.tuning.hyperparameter.ForestSearch.ForestSearch(parameter_space: list[skopt.space.space.Categorical | skopt.space.space.Integer | skopt.space.space.Real], saving_folder: str | PathLike, saving_filename: str)#
Bases:
SkoptSearchABC
Wrapper for the forest_minimize search of skopt.
Inherited attributes
- parameter_space#
- save_filename#
- save_folder#
List of inherited methods
Get search results.
search
(x, y, objective_function[, ...])- param kwargs:
It may have a keyword "skopt_kwargs" specifying the additional named
List of inherited decorated methods
Get search results.
search
(x, y, objective_function[, ...])- param kwargs:
It may have a keyword "skopt_kwargs" specifying the additional named
Inherited methods
- get_results() IHyperparameterSearchResults #
Get search results.
- Returns:
search_results – The results of the last search or the specified search at initialization.
- Return type:
- search(x, y, objective_function: Callable[[ndarray, ndarray, ndarray, ndarray, dict], float], cross_val_generator: ICrossValidation | None = None, train_test_data: bool = False, load_checkpoints: bool = False, *args, **kwargs) IHyperparameterSearchResults #
- Parameters:
kwargs – It may have a keyword “skopt_kwargs” specifying the additional named arguments to pass to the skopt optimization function. It cannot have one of “func”, “dimensions”, “x0” or “y0” since they are specified by the wrapper to manage checkpoints and search.
Inherited decorated methods
- get_results() IHyperparameterSearchResults #
Get search results.
- Returns:
search_results – The results of the last search or the specified search at initialization.
- Return type:
- search(x, y, objective_function: Callable[[ndarray, ndarray, ndarray, ndarray, dict], float], cross_val_generator: ICrossValidation | None = None, train_test_data: bool = False, load_checkpoints: bool = False, *args, **kwargs) IHyperparameterSearchResults #
- Parameters:
kwargs – It may have a keyword “skopt_kwargs” specifying the additional named arguments to pass to the skopt optimization function. It cannot have one of “func”, “dimensions”, “x0” or “y0” since they are specified by the wrapper to manage checkpoints and search.